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1. Introduction

Several models are available to explain the relationship between the re-
sponse probability and the dosage in quantal bioassay. These include the
probit, logit, one-hit, multi-hit, multistage, and Weibull models. Krewski
and Van Ryzin (1981) provide a review. The maximum likelihood method is
usually employed to estimate the response curves. The Bayesian approach
to these problems has been limited to a few simplified cases. Petrasovi-
tas and Cornell (1975) propose approximations to the Bayes estimates for
the one-hit model with single-dose assay. Zellner and Rossi (1982) employ
numerical integration techniques for computing Bayes estimates in probit
and logit models with noninformative priors. Recently, some advances have
been made for more complex situations. Albert and Chib (1991) develop
a Gibbs sampling approach for the probit model. They also extend their
methods to polytomous responses and the t-link distribution. Gelfand and
Kuo (1991) develop Gibbs sampling approaches for nonparametric dose
response curves with Dirichlet process priors and with product of beta pri-
ors. They also extend their models and methods to polytomous responses.
Ramgopal, Laud, and Smith (1992) extend the work of Gelfand and Kuo
to convex, concave, or ogive potency curves. Nagara] (1991) proposes an
importance sampling approach for the linearized multi-stage model.

The linearized multi-stage model specifies the probability of a subject’s

positive response to a dose at d as
P(d|B) =1~ e—'(ﬂo+ﬂ|d+...+ﬁkdk) (1.1)

with §; > 0, j = 0,...,k This model is currently used by the U.S.

Environmental Protection Agency (EPA) for risk assessment. As discussed




by Crump, Hoel, Langley, and Peto (1976) and Crump (1979), the model
is based on the assumption that inductior of toxic effects results from a
number of different random biological events, with the age-specific rate of
occurrence of each event linearly related to dose. When & = 1, this is the
on.-hit model described by Armitage and Doll (1961). The model in (1.1)
can also be considered as a generalized linear model (McCullagh and Nelder
1989) with complementary log as the link function.

To apply Bayesian analysis for the unknown parameters 8 = (fo, - - -, B%),
we assume that the Bo, . . ., Bk are independent, where 3; has a gamma dis-
tribution I'(a;.<y;) with mean a;/v; for j = 0,...,k. The gamma distri-
butions are chosen partly for convenience. The family of two parameter
gamma densities, though, incorporates densities with both increasing and
decreasing failure rates. Often statisticians have some prior belief about
the location and spread of the distribution of 3; for each j. Let p; and o;
denote a prior guess of this location and spread. Then a; and <; can be
chosen by the method of matching moments so that they satisfy y; = o;/7;
and o? = a;/7}.

In risk assessment, subjects are divided into groups, say I groups,
where for i = 1,...,I, n; subjects are given the substance at dosage level
d;. The number of casualties observed in group i is denoted by z;. Let
x = (z1,...,27). Given B, the subjects’ responses are assumed to be inde-
pendent. Therefore the likelihood function is

I (.
18 0 =11 () Pidya - i
It can be shown that the posterior distribution is a mixture of prod-

ucts of gamma distributions. This mixture increases in complexity as I




increases. This paper provides a Gibbs sampling approach to computing
the Bayes estimates. It can be used for any number of groups. This ap-
proach augments the data by latent variables that convert the integrals
(cumulative probabilities and survival probabilities) in the likelihood to
probability density functions. This augmentation facilitates us in speci-
fying the conditional density of B given the latent variables. A repeated
sampling scheme that generates variates from this conditional density and
the conditional density of the latent variables given 3 and the data allows
us to approximate the posterior distribution.

The dose response model in (1.1) is often used for low-dose extrapola-
tion, where the potency of a toxic substance on human beings (at low dose)
is inferred from experiments conducted at much higher doses. Practition-
ers are often interested in “Relative Additional Risk” (RAR) and “Risk
Specific Dose” (RSD). We provide methods of Bayesian inference for these
quantities. RAR can be interpreted as the conditional probability of a sub-
ject acquiring cancer, say, at dose level d, given that no cancer has been
developed in the absence of the carcinogen. RSD measures the dosage such
that the probability of a casualty is no more than a given number.

Because the model in (1.1) depends on k, the number of parameters,
it is natural to ask how to select k. One route to selecting k has been for
biologists to propose theory to explain the model. Another route, more
empirical, is to fit the models to data. Chi-squared goodness of fit tests are
usually employed by frequentists for model checking. A criterion for model
selection based on Bayesian predictive ordinates from cross-validated data
is adopted in this paper.

Section 2 describes the Gibbs sampling approach. Section 3 addresses




estimation of RAR and RSD. Section 4 develops the criterion for model
selection. Examples are given in Section 5, and some concluding remarks

are provided in Section 6.

2. Gibbs Sampling

A Gibbs sampling approach specific for our problem is developed here
to compute the posterior distribution of 8. One can refer to Geman and
Geman (1984), Tanner and Wong (1987), and Gelfand and Smith (1990)
for general discussion of Gibbs sampling.

Given the likelihood and the prior, we observe that the posterior density

of Bis
1 k
FRIx) <[] (1 - e—(Bo+Bld.+-.~+Bkd§))I" ﬁ;_’fle—lv,'+zi=1(m—z.-)dﬂﬁ,. (2.1)
i=1 =0
To sample B from (2.1) by stochastic substitution with augmented data
z, we can sample repeatedly from f(z|B,x), the conditional distribution
of z given B and x, and f(8|z, x), the conditional distribution of 38 given
z and x. Therefore, it is desirable to augment the data by the latent
variables z, such that we can easily sample variates from the two conditional
densities f(z|8,x) aﬁd f(Blz,x). For each i, let us consider the latent
variables {z;}, j = 1,...,%;, as i.i.d. random variables with an exponential

distribution with mean 1/(8o + Bidi + . .. + Bkdf). Observe that
P(Z,’j < 1) =1- e—(B°+Bld‘+"'+ﬁkdf).

Assume the distribution of the z; = (2, ..., %iz,) are independent for i =

1,...,I. Let z = (zy,...,2;). Then the conditional density of z given B

S




and x is

1 =z
g(zlﬁ’ X) = H H gi(zijlﬁ’ X), (22)

i=1j5=1
where g, is derived from an exponential distribution with mean 1 /(Bo +

Bid; +- - -+ Bxd¥) by truncation on the right by 1. To obtain the conditional
density of B given z and x, set 5,(8) = B + fidi + -+ + Bid* and observe

k :
FBlzx) o« J[ B e e sy

j=0

< [lla@rre O, 2.9

This suggests another data augmentation step is needed to facilitate the

generation of the (3 variate given the latent variables. For each i, consider

w; = (wyo, . .., wy) distributed as a multinomial distribution with parame-
Ties Bo Byd; Brd;

ters z, and cell probabilities ( 5 "’ yeees s“‘ ). Moreover, generate

the wy,...,w; independently. Let w denote (wy,...,wy). Then the joint

density of the w is given by

1
f(WI,B,X) = Hhi(wilx»ﬁ)

i=1

() () () (287

(2.4)

Let 24 = Y5i;2;. Now the conditional density of 3 given z,w, and X
can be verified to be the product of independent gamma densities with
parameters &; = Yi; w;j and §; = I d(ziy + ni — ),
k A -
f Bz, w,x) o< [[ 87 e, (2.5)
i=0
Having explained the conditional densities needed in the substitution algo-

rithm, we list the steps used to generate the samplers.
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(1) Start with an initial choice of the 8, denoted by B9, Set the counter

in the superscript to 0.

(2) Generate z{*) and w(") independently from F(z|B8%,x) as in (2.2) and
F(w|B?, x) as in (2.4).

(3) Generate 3 from f(Bjz™), w"),x) as in (2.5).

(4) Repeat steps (1), (2), and (3) with the updated counter in all the

superscripts, that is, with G'*") replacing A", etc., in each step.

The generation of z,; in (3) from the truncated density can be facilitated
by use of the equation z,; = G™1(G(0)+Uy;(G(1)~G(0) ), where the U;; are
independent uniform [0,1] variates, and G is the exponential distribution
function with mean 1/s,(8). Then, z;; = —In(1 — Uy(1 - e"‘(ﬁ)))/s;(ﬂ),
independently for j =1,....z:.

Suppose we also replicate the above iterations R times by using inde-
pendent initial choices of the 8. Let the B, z, and w variates generated in
the Lt step of the iteration for the rth replication be denoted by B 2,
and wif), for r = 1,...,R. Similar notation is applied to the variates

W, Zij Zity €tC. Then the posterior distribution of 3 is estimated by

R
R ~ 5 T £BED W), (26)

where f on the right is the product of gamma distributiohs described as
in (2.5). Since the 8;, j =0,...,k, are independent in (2.5), the posterior
mean of f3; can be approximated by

L
x o5 + Y wf—,—.3

:BJ = . L .
oot Tiad (Zf+?r +ni— )

(2.7)

x| =




The computations in (2.6) and (2.7) use only the variates generated
in the last step of each iteration. A more efficient algorithm has been
proposed by Gelman and Rubin (1992) where estimates are produced by
averaging over all variates generated in the second halves of the iterations
for all replications. They also study the choices of L and R by analysis of
variance techniques. |

We will use the empirical values {/3§'L,)}f=l from the replicated samples

to construct the predictive interval for 8;.

3. Relative Additional Risk and Risk Specific

Dose

The computation of some functionals of the parameters by stochastic
substitution i~ ('iscussed in this section.
The relafive a.lditional risk over the background at a dose of level d is

defined by

A(d) = f)—id_)___—PT?d%O_). =1 eﬁld"'"“"'ﬂkdk.

The relative additional risk can be interpreted as the conditional probability
of acquiring cancer, for example, at dose level d given that no cancer has
developed in the absence of the carcinogen. Observe that A(d) = f,d at
low dose. Let A)(d) denote an estimate of A(d) computed irom the L*
iteration and the r** replication in the sampling procedure. Then A(d)

can be computed from (2.5) and the moment generating functions of the




gamma distributions

(L)

}
. k dJ _ (L) 05+Z|‘=1 Y
ASL)(d) ~1 - H ;i + Z (nt z; + Zit, r(i) ) (31)
d + Y +Z{— dJ(nt -z + zH-r)
The Bayes estimate for A(d), denoted by A(d), is computed from
R
A(d) = Tz Y AN(a). (3.2)

r=1
The predictive interval for A(d) can be computed from the empirical mea-
sure that assigns weight 1/R to each AN(d) forr =1,...,R.

The Risk Specific Dose (RSD) is defined as the dose level such that the
probability of a casualty P(d) is at most 6. RSD(#) is the value d such
that P(d) = 6. Equivalently, RSD(0) is defined to be the largest real root

of the following equation:
In(l — 8) + Bo + Bid + -+ + Bid* = 0. (3.3)

Since the parameters {8;}5_, are unknown, we propose to estimate the
B;. j = 0,...,k, by (2.6) first, then find the roots of (3.3) where f; is
replaced by BJ, the estimates of 3;, for all j = 0,...,k. Observe that when
k =1, then ESD(8) = —[30 + In(1 — )]/51.

4. Model Selection

The selection of k, the degree of the polynomial in the exponent of (1.1),
is studied in this section. A criterion based on the conditional predicted
ordinates from cross-validated data is adopted for model selection. This

approach, called pseudo-marginal likelihood, was first proposed by Geisser

9




and Eddy (1979). The role of using predictive densities from cross-validated
data for model determination was also supported by Stone (1974), Box
(1980), and Pettit and Young (1990). Box (1980) states that the predictive
distribution enables one to criticize the entertained model in the light of
current data. Gelfand, Dey, and Chang (1992) have provided more detailed
discussion of Bayesian model selection and its implementation by means of
Gibbs sampling.

Because the selection criterion was developed for independent observa-
tions, we need to reconsider our data from this viewpoint. Suppose each
subject is given a dose independently. The response of each subject is ei-
ther positive or negative, Therefore, we observe n independent Bernoulli
random variables with probability of success p,, s =1,...,n. If di(y) is the

dosage for subject s, then

p — 1 _ e"(ﬂo"'Blds(:)+"'+ﬁkdf(,))
$ — .

Let y(s) denote the whole data set with the s** observation y, deleted. The

conditional predicted ordinate (CPO) for y,, denoted by c,, is defined by

Cs = f(ysly(a)) = /f(ytlﬁvY(l))f(ﬂly(t))d,B' (4'1)

Note ¢, depends on k. We suppress this dependence in the notation for the
time being for simplicity.

The estimated density f(Bly()) can be computed as in (2.6) with y,
deleted from the data set. Let dg‘l;?(,) and "/J(.{;?(,) denote the parameters of

the gamma density of §; in (2.5) and (2.6) computed from the data with
y, deleted. Since f(y,13,¥()) = f(:|B) = p¥*(1 — p,)' ¥, the computation

of (4.1) is straightforward with the use of the moment generating function

10
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of a gamma distribution. If y, is 0 and the s'" subject is given the dosage

d, then c, is approximated by

r=] j=0 + dJ

(L)
( ) aJ-'t(‘)
1 K4 q;
C, = R ZH ( .(L)J' i ) . (4.2)

If y, is 1 and the s** subject is given the dosage d, then c, is approximated

by one minus the right side of(4.2). The variance of CPO c, is given by

" 2
V(C,) — /e~2(ﬁo+ﬁ,d+...+ﬁgd*)f(ﬁly(5))d’3_ (/ e—(Bo+ﬁ|d+...+ﬁgd )f(ﬁIY(.))d,B) )

It is approximated by
X 1 R & ;?(L) Jire)
Vo= LI | —ds | -et @9

Since ¢, depends on k, we now use the notation c,(k) for ¢, based on the
model with a k degree polynomial in the generalized linear model. Define
the pseudo-marginal likelihood C(k) = [],-, & (k). We select the k with the
largest pseudo-marginal likelihood. Equivalently, we select the model with

the largest T7., In é,(k).

5. Numerical Examples

5.1 Bayes Inference

The data set is taken from Howe, Crump, and Van Landingham (1986).
Nagaraj (1991) also used it for illustration. There are 200 animals divided

into four groups with 50 animals in each group. The dosages assigned to the

11

12




groups are 0, 1, 2, and 3. The observed number of positive responses x in
each group is (0,2,10,30). Tables 1-3 exhibit the various Bayes estimates
computed based on the Gibbs sampling method with 50 iterations and 1000
replications. Three models with & =1,2,3 are considered, each with three
choices of priors. The choices are (1) a; = 2 and v; = 20 for all j, (2)
a; =+v; =1 for all j, and (3) a; =1 and v; = .01. The pfiors are chosen
to center at .1, 1, and 100 with small, medium, and large variances. The
parameters and functionals of interest are 3;, j =0, ... ,k, and the Relative
Additional Risk (RAR) .A(d) evaluated at d = .5,1,2, and 3 (A(0) =0 by
definition). For each of these functionals, we display the point estimate
(posterior mean), the posterior standard deviation, and the posterior 95%
confidence interval. The Bayes estimates for P(d) evaluated at the dosage
levels are also given. The corresponding standard deviations and confidence
intervals can be computed from the Gibbs samplers by methods similar to
those for f8; and A(d). They are omitted here for brevity. The risk specific
dose (RSD) for 6 = .025,.05,.075,.1,.125, and .15 is provided.

The results of these tables show that the Bayes estimates for the second
and third choices of the priors are very close to each other. The effect of
the small mean and variance of the first prior can be seen from the highest
coeffici. nt (Bx) for each model. As k increases, the Bayes estimates of P(d)
for d = 0,1,2, and 3 approach the nonparametric maximum likelihood

estimates, which are 0, .04, .2, and .6, respectively.

5.2 Model Selection

The numerical results for the model selection are given here. We have

considered each y,, s = 1,...,200, to have a Bernoulli distribution with

12




the probability of a success (positive response) to be P(d), where d is the
dose given to the subject s. Given the data x = (0,2,10,30) observed at
the dosages 0, 1, 2, and 3, we can consider y, = 0 for 8 = 1-50, 53-100,
111-150, 181-200, and y, = 1 for the rest of the indices.

Because of the grouped data x, many of the CPO’s will have the same
value. In fact, instead of computing 200 CPO's, we need only compute 7
of them. Let n denote the number of subjects in each group. Then the
computation of the CPO for s = 1,...,50 is based on n = (49, 50, 50, 50)
and x = (0, 2, 10, 30); the CPO for s = 51,52 isbased on n = (50,49, 50, 50)
and x = (0, 1,10, 30), etc.

The values of the CPQ’s for each prior choice with different models are
given in Tables 4-6. Usually we prefer to select a diffuse prior for model
selection and let the data do the talking. In our examples, the analysis is
relatively insensitive to the prior choice. They all suggest that the model
with k = 2 improves upon the model with £ = 1. Although the pseudo-
marginal like‘lihood factor for the model with k = 3 is slightly larger than
that of the smaller model, the improvement is very imarginal. This suggests
either model, k = 2 or k = 3, may be acceptable for the data set. In fact,
Table 7, which provides the Gibbs approximation to the pseudo-marginal
likelihood for k = 1,2,...,9, shows that the pseudo-marginal likelihood
is essentially flat for 2 < k£ < 9. Table 8 indicates that the value of the
coefficient 3y, important for low-dose extrapolation, is not sensitive to the

mode] for k& > 3.
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Table 1: Gibbs Approximation to the Bayes Estimates when &k = 1

0;j=2,7=20|a=1v=1|a=17=.01
Bo  (SD) 022 (.011) | .011 (.008) | .012  (.008)
95% C.I. (.010, .050) || (005, .034) | (.006, .034)
B,  (SD) 161 (.009) || .175 (.007) | .175  (.007)
95% C.IL (138, .174) | (157, .185) || (.157, .186)
A(5)  (SD) 077 (.015) || .084 (.015)| .084  (.016)
95% C.I. (.066, .083) | (.075, .088) || (.075, .089)
A1)  (SD) 148  (.024) | .160 (.025) | .160  (.025)
95% C.I. (129, .159) | (.145, .169) || (.145, .169)
A(2) (SD) 274  (.039) | 294 (.040) | 294  (.040)
95% C.1. (.240, .293) || (.268, .309) || (.268, .309)
A@B)  (SD) 380 (.049) || .406 (.050) || .406  (.050)
95% C.I. (.337, .405) || (.373, .425) | (.373, .426)
P(0), P(1) 021 167 { .011 170 | .012  .170
P(2), P(3) 290 .395 | .302  .414 || .304, 415
RSD(.025), RSD(.05) | .022  .184 | .079 .228 | .076  .225
ESD(.075), RSD(.10) | .350  .521 | .381 538 || .377  .534
RSD(.125), RSD(.15) | .697  .877 | .699  .865 | .695 .86l
14
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Table 2: Gibbs Approximation to the Bayes Estimates when k = 2

o;=2,7=20a=1v=1|a;=1,v=.01
B (SD) 019  (009) || .011 (.008) | .011  (.008)
95% C.I. (.010, .041) | (006, .033) |.(.006, .034)
B, (SD) 037 (021) | 029 (.026)| .032 (.026)
95% C.I. (008, .088) |l (004, .100) i (.004, .100)
B,  (SD) 063 (011) | 068 (.012) | .067  (.012)
95% C.I. (039, .079) | (035, .083) | (.035, .083)
A(5)  (SD) 034 (.014) || 031 (.015) || .032  (.015)
95% C.I. (023, .053) | (021, .058) | (.021, .057)
A1)  (SD) 096  (.020) || .093 (.021) || .094  (.022)
95% C.I. (079, .121) | (076, .125) | (.077, .128)
A(2) (SD) 279 (038) | 281 (.038) | .282  (.038)
95% C.I. (251, .296) | (258, .299) | (.257, .300)
A@B) (SD) 491  (057) | .502 (.057) | .501  (.057)
95% C.1. (440, .527) | (449, .535) |-(.449, .532)
P(0), P(1) 019 .113 | 011 .103 | .011  .105
P(2), P(3) 293 .504 | 290 .510 | .291  .510
ESD(.025), RSD(05) | 139  .479 | 288 .582 | 275  .568
ESD(.075), KSD(10) | 715  .910 | .798 .980 || .785  .968
RSD(125), RSD(15) | 1.083 1.240 || 1.142 1.290 || 1.131  1.280
15
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Table 3: Gibbs Approximation to the Bayes Estimates when k£ = 3

a; =2,7 =20 a; =1,v;=1 a;=1,v;=.01

Bo  (SD) 018  (.008) || .012 (.008) | .011  (.008)

95% C.I. (010, .041) |l (.006, .034) | (.006, .033)

A1 (SD) 030 (.017) || .025 (o019) || .025  (.020)

95% C.I. (008, .071) | (004, .074) | (.004, .073)

B (SD) 025 (.014) || .023 (.018) | .023  (.018)

95% C.I. (005, .057) | (002, .086) || (.002, .067)

B3 (SD) 019  (.006) || .020 (.007) | .020  (.008)

95% C.I. (007, .029) || (.003, .031) | (.002, .031)

A(5)  (SD) 023 (.014) || .021 (.014) || .021  (.014)
95% C.I (012, .041) | (008, .043) || (.007, .041)

A(1)  (SD) 071 (.020) || .066 (.022) | .066  (.022)
95% C.I. (049, .100) | (041, .101) || (.040, .100)

A(2) (SD) 268  (.037) || .260 (.038) | .260  (.038)
95% C.IL (239, .291) | (231, .288) | (232, .289)

A(3) (SD) 560  (.059) || .555 (.061) || .558  (.061)
95% C.IL (.503, .604) | (.500, .601) | (.502, .601)

P(0), PQ1) 018 .088 | .0o12 .077 || .011  .076

P2), P(3) 282 572 || 269 .565 || 270  .567

RSD(.025), RSD(.05) | .195  .624 | .370 .741 | .381  .748
RSD(.075), RSD(.10) | .888 1.001 || .983 1173 | .989  1.177
ESD(.125), RSD(.15) | 1.258 1405 | 1.332 1472 | 1.335 1474

16
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Table 4: Gibbs Approximation to the CPO for the Prior with a; = 2 and

~v; =20 for all j

s 1-50 5152 53.100 101-110 111-150 151-180 181-200 | In(ITé.)
k=1 & 980 .163  .833  .285 708 389 601 | -78.242
5D(c,) | (017) .024) (.024) (.037) (.037)  (.047)  (047)
k=2 & 982 110  .887  .288 706 495 494 | -72.743
5D(c,) | (015) (.022) (.022) (.037)  (.037)  (.055)  (.085)
k=31 & 982 .08 912 277 17 563 424 | -70.863
5D(c,) | (.016) (.021) (.022) (.036)  (.036)  (.059)  (.058)
Table 5: Gibbs Approximation to the CPO for the Prior with a; =1 and
~; =1 for all j
s 1-50 51-52 53-100 101-110 111-150 151-180 181-200 | In([1é;)
k=1| & 988  .166  .830  .297 .696 406 584 | -77.560
5D(c,) | (014) (.025) (.025) (.089) (.039) (049)  (.049)
k=2 & 989  .100  .895  .285 709 501 488 | -71.942
5D(c.) | (015) (.022) (.023) (.038) (.038) (056)  (.056)
k=3| & 988 .071 923  .264 730 555 431 | -70.132
§D(c,) | (015) (.022) (.033) (.087) (.037) (.060)  (.060)
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Table 6: Gibbs Approximation to the CPO for the Prior with a; =1 and

v; = .01 for all §

5 1-50 51-52 53-100 101-110 111-150 151-180 181-200 | In([1é&;)
k=1] &, 988  .167  .829  .298 695 407 582 | -77.623
SD(c,) | (.015) (.025) (.025) (.039)  (.039)  (.049)  (.049)
k=21 .4 989  .100  .894  .286 708 501 487 | -71.997
S5D(c,) | ((015) (.022) (.023) (.038)  (.038)  (.056)  (.056)
k=3 ¢, 988  .073  .922 264 730 556 431 | -70.122
SD(c,) | (015) (.023) (.024) (.037) (.087)  (.061)  (.060)
Table 7: Gibbs Approximation to the Pseudo-Marginal Likelihood In C(k)
[ 3 T 1 2 3 4 5 6 7 8 9]
a, =2 &vy=20 78242 -72.743 -70.863 -70.358 -70.368 -70.784 -71.334 -71.959 -72.912
oy =, = 1 77560 -71.942 -70.132 -69.856 -69.441 -69.764 -70.065 -70.058 -70.423
a,=1&~, = .01 77.623  -71.897 -70.122 -69.798 -69.743 -69.603 -69.864 -70.044 -70425

Table 8: Gibbs Approximation to the Bayes Estimates of 3;

[ k 1 2 3 4 5 6 7 8 9 ]
a;=2&~; =20 | .161 .037 030 .027 .026 .026 .025 .024 .024
o, =7 =1 175 .029 .025 .024 .024 .024 .023 .024 .025
aj=1&,=.01].175 .032 .025 .025 .024 024 .024 .024 .025
18
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6. Concluding Comments

We have illustrated the usefulness of the Gibbs sampling method in the
linearized multi-stage model. The results can also be extended to the hier-
archical Bayesian setup where the hyperparameters a; and v; are random
with appropriate distributions. The implementation of the Gibbs method_\
can be carried out by methods similar to those in Gelfand and Smith (1990).
When there is no conjugacy structure involved, the Metropolis algorithm
(Metropolis, et al. 1953) can be used for sampling the variates. The re-
sults can also be extended to different prior distributions; for example,
instead of gamma distribution, we can assume that each §; has a truncated
normal distribution, because 8; > 0. Then we can specify. that the mean
and variance of the normal distribution have normal and inverse gamma

distributions. The Gibbs method can be implemented as in Section 2.

References

(1) Albert, J., and Chib, S. (1991), “Bayesian Analysis of Binary and

Polychotomous Response Data,” preprint.

[2] Armitage, P., and Doll, R. (1960), “Stochastic Models for Carcino-
genesis,” Proceedings of the Fourth Berkeley Symposium, ed. J.
Neyman, 4, 19-38.

[3] Box, G. (1980), “Sampling and Bayes’ Inference in Scientific Modeling
and Robustness” (with discussion), Journal of the Royal Statistical
Society, Ser. A, 143, 382-430.

19




4]

[5]

(6]

8]

[10]

[11]

Crump, K.S. (1979), “Dose Response Problems in Carcinogenesis,”
Biometries, 35, 157-167.

Crump, K.S., Hoel, D.G., Langley, C.H., and Peto, R. (1976), “Fun-
damental Carcinogenic Processes and Their Implications for Low Dose

Risk Assessment,” Cancer Research, 36, 2973-2979.

Geisser, S., and Eddy, W. (1979), “A Predictive Approach to Model
Selection,” Journal of the American Statistical Association, 74,

153-160.

Gelfand, A.E., Dey, D.K., and Chang, H. (1992), “Model Determina-
tion Using Predictive Distributions with Implementation via Sampling-
Based Methods” (with discussion), in Bayesian Statistics 4, eds. J.
M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford:
Oxford University Press, pp. 147-169.

Gelfand, A.E., and Kuo, L. (1991), “Nonparametric Bayesian Bioassay
Including Ordered Polytomous Response,” Biometrika, 78, 657-666.

Gelfand, A E., and Smith, A.F.M. (1990), “Sampling-Based Approach-
es to Calculating Marginal Densities,” Journal of the American Stat-

istical Association, 85, 398-409.

Gelman, A.E., and Rubin D. (1992), “Inference from Iterative Simu-

lation Using Multiple Sequences,” preprint.

Geman, S., and Geman, D. (1984), “Stochastic Relaxation, Gibbs Dis-
tributions, and the Bayesian Restoration of Images,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 6, 721-741.

20




(12] Howe, R. B., Crump, K. S., and Van Landingham, C. (1986), “GLOB-
AL 86: A Computer Program to Extrapolate Quantal Animal Toxicity

Data to Low Doses,” unpublished EPA software documentation.

(18] Krewski, D., and Van Ryzin, J. (1981), “Dose Response Models for
Quantal Response Toxicity Data,” in Statistics and Related Topics,
eds. M. Csdrgd, D. A. Dawson, J. N. K. Rao, and A. K. Md. E. Saleh,
Amsterdam: North Holland, pp. 210-231.

(14] McCullagh, P., and Nelder, J.A. (1989), Generalized Linear Models,
(2nd ed.), London: Chapman and Hall.

[15] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N, Teller, A. H.,
and Teller, E. (1953), “Equation of State Calculations by Fast Com-
puting Machines,” Journal of Chemical Physics, 21, 1087-1092.

[16] Nagaraj, N. K. (1989), “Bayesian Estimation in Dose-Response Mod-
TN

\ Sae

els,” preprint.

[17] Petrasovitas, A., and Cornell, R. (1975), “Approximations to the Bayes
Estimate for a Quantal Assay with Simple Exponential Tolerance Dis-

tribution,” Communications in Statistics, 4(9), 851-862.

(18] Pettit, L. 1., and Young, K. D. S. (1990), “Measuring the Effects of
Observations on Bayes Factors,” Biometrika, 77, 455-466.

[19] Ramgopal, P., Laud, P. W., and Smith, A. F. M. (1992), “Nonpara-
metric Bayesian Bioassay with Prior Constraints on the Shape of the

Potency Curve,” preprint.

[20] Stone, M. (1974), “Cross-Validatory Choice and Assessment of Statis-

tical Predictions,” Journal of the Royal Statistical Society, Ser. B,

21

22




111-147.

(21] Tanner, M., and Wong, W. (1987), “The Calculation of Posterior Dis-
tributions by Data Augmentation” (with discussion), Journal of the

American Statistical Association, 81, 82-86.

[22] Zellner, A., and Rossi, P.E. (1984), “Bayesian Analysis of Dichotomous
Quantal Response Models,” Journal of Econometrics, 25, 365-393.

22




